Search results for " tetramers"
showing 6 items of 6 documents
Human CD8 T lymphocytes recognize Mycobacterium tuberculosis antigens presented by HLA-E during active tuberculosis and express type 2 cytokines
2015
CD8 T cells contribute to protective immunity against Mycobacterium tuberculosis. In humans, M. tuberculosis reactive CD8 T cells typically recognize peptides associated to classical MHC class Ia molecules, but little information is available on CD8 T cells recognizing M. tuberculosis Ags presented by nonclassical MHC class Ib molecules. We show here that CD8 T cells from tuberculosis (TB) patients recognize HLA-E-binding M. tuberculosis peptides in a CD3/TCR αβ mediated and CD8-dependent manner, and represent an additional type of effector cells playing a role in immune response to M. tuberculosis during active infection. HLA-E-restricted recognition of M. tuberculosis peptides is detectab…
HLA-E-restricted CD8+ T lymphocytes as a new player in the adaptive immune response to Mycobacterium tuberculosis
HLA-E-Restricted CD8+ T Lymphocytes Efficiently Control Mycobacterium tuberculosis and HIV-1 Co-Infection
2020
We investigated the contribution of human leukocyte antigen A2 (HLA-A2) and HLA-E-restricted CD8+ T cells in patients with Mycobacterium tuberculosis and human immunodeficiency virus 1 (HIV-1) coinfection. HIV-1 downregulates HLA-A, -B, and -C molecules in infected cells, thus influencing recognition by HLA class I-restricted CD8+ T cells but not by HLA-E-restricted CD8+ T cells, owing to the inability of the virus to downmodulate their expression. Therefore, antigen-specific HLA-E-restricted CD8+ T cells could play a protective role in Mycobacterium tuberculosis and HIV-1 coinfection. HLA-E- and HLA-A2-restricted Mycobacterium tuberculosis-specific CD8+ T cells were tested in vitro for cyt…
Analysis of the global CD8 T cell response during Mycobacterium tuberculosis infection
2013
A tetranuclear cubane-like nickel(II) complex with a tridentate salicylideneimine Schiff base ligand: tetrakis[μ3-4-methyl-N-(2-oxidophenyl)salicylid…
2016
The tetranuclear title complex, [Ni4(C14H11NO2)4(CH3OH)4]·0.8CH3OH, has a distorted cubane topology shaped by four Schiff base ligands. The cubane [Ni4(μ3-O4)] core is formedviathe O atoms from the Schiff base ligands. The octahedrally coordinated NiIIions occupy alternating vertices of the cube. Each NiIIion is coordinated by oneO,N,O′-tridentate dianionic ligand, two O atoms of oxidophenyl groups from adjacent ligands and the O atom of a coordinating methanol molecule. The cubane core is stabilizedviaan intramolecular O—H...O hydrogen bond between the hydroxy group of the coordinating methanol molecules and the phenolate O atom of the aldehyde Schiff base fragment. Additional stabilizatio…
Optimized Protocol for the Detection of Multifunctional Epitope-Specific CD4+ T Cells Combining MHC-II Tetramer and Intracellular Cytokine Staining T…
2019
Analysis of multifunctional CD4+ T cells is fundamental for characterizing the immune responses to vaccination or infection. Major histocompatibility complex (MHC)/peptide tetramers represent a powerful technology for the detection of antigen-specific T cells by specific binding to their T-cell receptor, and their combination with functional assays is fundamental for characterizing the antigen-specific immune response. Here we optimized a protocol for the detection of multiple intracellular cytokines within epitope-specific CD4+ T cells identified by the MHC class II tetramer technology. The optimal procedure for assessing the functional activity of tetramer-binding CD4+ T cells was based o…